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We address the problem of generating a phonon optimized interatomic potential (POP)
for aluminum. The POP methodology, which has already been shown to work for
semiconductors such as silicon and germanium, uses an evolutionary strategy based
on a genetic algorithm (GA) to optimize the free parameters in an empirical inter-
atomic potential (EIP). For aluminum, we used the Vashishta functional form. The
training data set was generated ab initio, consisting of forces, energy vs. volume,
stresses, and harmonic and cubic force constants obtained from density functional the-
ory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom
method (EAM) and charge-optimized many-body (COMB3) potential, show larger
errors when the EIP forces are compared with those predicted by DFT, and thus they
are not particularly well suited for reproducing phonon properties. Using a compre-
hensive Vashishta functional form, which involves short and long-ranged interactions,
as well as three-body terms, we were able to better capture interactions that reproduce
phonon properties accurately. Furthermore, the Vashishta potential is flexible enough
to be extended to Al2O3 and the interface between Al-Al2O3, which is technologi-
cally important for combustion of solid Al nano powders. The POP developed here
is tested for accuracy by comparing phonon thermal conductivity accumulation plots,
density of states, and dispersion relations with DFT results. It is shown to perform
well in molecular dynamics (MD) simulations as well, where the phonon thermal
conductivity is calculated via the Green-Kubo relation. The results are within 10% of
the values obtained by solving the Boltzmann transport equation (BTE), employing
Fermi’s Golden Rule to predict the phonon-phonon relaxation times. © 2017 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5003158

I. INTRODUCTION

Aluminum is one of the most abundant and most useful metals in the earth’s crust. Micron-
sized aluminum powder has been routinely used in combustion, propulsion, and energy generation
applications, due to its high energy density, low cost of extraction, and relative safety.1 The past
decade, however, has marked a shift toward the use of nano-sized aluminum particles, which have
large specific surface area and therefore higher reaction rates.2,3 Unfortunately, the formation of
aluminum oxide on the particle surface reduces the rate of heat conduction between the heat release
zone and the unburned reactants, which is a key process governing combustion wave propagation.4

For a spherical particle, for instance, the fraction of oxide increases from 6 to 47% as the size of
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the particle decreases from 30 to 3 nm.5 Therefore, the overall burning rates of nano-aluminum
powders could be substantially diminished by the oxide surface, through reduced heat conduction
rates.

The thermal conductivity of both bulk and nanoscale aluminum particles is dominated by elec-
trons, and therefore Al should exhibit weak size effects at length scales of the order of 10’s of
nanometers.6–8 The thermal conductivity of aluminum oxide, on the other hand, is phonon domi-
nated and is much lower than that of aluminum. It could, hence, become a predominant resistance to
heat conduction as the combustion process proceeds towards completion. For such small particles,
phonon boundary scattering may become important, since the oxide layer thickness can be ∼2-3 nm,
much smaller than the phonon mean free paths (MFP) in many other materials.9–11 Furthermore,
not only the two solid phases, but also the interface between them probably plays a crucial role in
heat conduction, and the interface may possibly be even more significant than the layers, in terms of
resistance.

A series resistance circuit model can be used to estimate the total resistance, R of a nano-aluminum
particle with oxide layer, and the contribution of each conductive resistance given as in Eq. 1.

R= 2RAl2O3 + 2Rint + Rparticle (1)

As a rough estimate based on phonon MFP spectra calculated for Al2O3 and the electron MFPs
in Al,12 we assume, kAl = 100 W/m-K; kAl2O3 = 5 W/m-K for a 10 nm aluminum particle with
a 3 nm oxidation layer. Lyeo et al.13 report results for the temperature dependence of interfacial
conductance of Al/Al2O3 measured using the time-domain thermoreflectance (TDTR) method. They
obtained a room temperature interfacial conductance of ∼200 MW m-2 K-1. Using this data, the
interfacial resistance Rint is 5x10-9 m2K/W, and our simplified estimate suggests that the interfacial
conductance is likely to dictate ∼ 90% of the total resistance. We therefore expect that the interface
will be dominant, the contribution from the oxide layer is < 10%, and the Al comprises < 1%. It is
theorized, and there is some evidence that suggests, that electrons also make a negligible contribution
to the interfacial resistance,14 and therefore the phonons are most critical.

Classical molecular dynamics (MD) can be used to study phonons and predict both interfacial
conductance15 and phonon thermal conductivity.16 Ab initio methods such as density functional theory
(DFT)17 may also be used, but they are limited by the system size. They also do not decompose the
force on atoms in terms of contributions from other atoms; that is, only the total force on atoms results,
since the charge density is not easily partitioned into individual atom contributions. Formalisms that
provide phonon mode-level information on thermal conductivity18 and interfacial conductance19

require force decomposition, so it is not clear how such formalisms could be used in conjunction
with DFT.

One promising approach to studying phonon physics is to develop a phonon optimized interatomic
potential (POP) that can be used in MD simulations.20 The most widely used potential for Al is the
embedded atom method (EAM);21 the charge optimized many body (COMB3) potential has also
recently been used to model Al.22,23 However, these potentials were not specifically designed or
optimized to describe phonons, and it is not known how well these potentials will reproduce ab initio
MD trajectories and subsequent phonon-related properties. In theory, the complexity in common
potential forms should be capable of capturing phonons accurately, but to better quantify the extent to
which the existing potentials (EAM and COMB3) can describe phonons, we compare their predicted
forces with forces obtained from DFT results for supercells, where the atoms have been randomly
displaced from their equilibrium lattice sites. As a quick test, we performed self-consistent field
(SCF) calculations on Al (full details given in the methodology section), and the total force errors
were compared with those of predictions by EAM21 and COMB3,22 using a FCC supercell of Al
consisting of 32 atoms. The crystal was first relaxed, then random displacements (maximum = 0.01 Å
and RMS = 0.0062 Å) were given to each atom and forces were evaluated. Comparing the forces from
the calculations predicted by EAM and COMB3 potentials with the DFT results, the average error
in forces for EAM was ∼ 52% and ∼ 48% for COMB3. Accurate force predictions are important
for predicting phonon properties, but it is not well understood what value of force error can be
tolerated and still yield reasonable phonon properties. Prior works20,24 on the development of POP
for crystalline silicon and germanium suggest ∼10% force error is satisfactory.
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In this work, we present a POP for Al based on a training set consisting entirely of DFT
calculations. Initial work by Rohskopf et al.20 showed that the POP methodology can work for
semiconductors such as Si and Ge, and suggested24 that the method is general and can be extended
to other materials/classes. Here we apply the POP methodology to a metal (Al) and seek to deter-
mine if the POP approach can properly reproduce the phonon contributions to thermal conductivity
for Al. Training datasets to sample the phase space were generated from DFT calculations, and
consist of five key properties, namely total forces and stresses, energy vs. volume, and harmonic
and cubic force constants. As for Si and Ge, a genetic algorithm25,26 based optimization routine
was used to search the space of fitting parameters. The Vashishta27 functional form was chosen to
describe the potential because it consists of short and long-range interactions, and three-body terms
to capture phonon interactions. Since the functional form is sufficiently flexible to describe both Al
and Al2O3, in a future study the interfacial conductance between the two phases can be studied in
detail.

II. METHODOLOGY

A. The Vashishta potential functional form

The Vashishta potential has previously been used in MD simulations for thermal transport prop-
erty evaluations;28 it was originally developed for silicon carbide27 and has been extended to Al2O3.29

The potential is fairly comprehensive, and may be parameterized for describing the Al/Al2O3 inter-
face in future, with the goal of describing each bulk material as well as the interface, all with a single
functional form – albeit with different parameters for Al interactions in each phase (i.e. an Al atom in
metallic Al will likely be treated as a different species from Al in Al2O3). The Vashishta functional
form expresses interaction potential energy consisting of two and three-body terms:

V =
∑
i<j

V (2)
ij (rij)+

∑
i,j<k

V (3)
ijk (rij, rik) (2)

The two-body term includes steric-size effects, Coulomb interactions, charge-induced dipole,
and van der Waals interactions, and can be written as:

V (2)
ij (r)=




Hij

rηij
+

ZiZj

r
e−

r
χ −

Dij

2r4
e−

r
ξ −

Wij

r6
, r ≤ rc,

0, r > rc.
(3)

It is truncated at rc and the shifted potential can be described as:

V (2,shifted)
ij (r)=




V (2)
ij (r) − V (2)

ij (rc) − (r − rc)
[
dV (2)

ij (r)
/
dr

]
r=rc

, r ≤ rc,

0, r > rc.
(4)

The three-body term is a product of spatial and angular dependent components,

V (3)
jik (rij, rik)=R(3)(rij, rik)P(θjik) (5)

R(3)(rij, rik)=Bjik exp

(
γ

rij − ro
+

γ

rik − ro

)
Θ

(
ro − rij

)
Θ (ro − rik) (6)

P(3)(θjik)=

(
cos θjik − cos θjik

)2

1 + Cjik

(
cos θjik − cos θjik

)2
(7)

In this study, among the 13 independent parameters, 12 parameters H, η, χ, D, ξ, W, rc, B, γ,
r0, C, and cos θjik need to be optimized. The charges Z i can be set to zero in the aluminum crystal,
since it is charge neutral.
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B. Genetic algorithm based optimization

With 12 independent fitting parameters, the corresponding 12 dimensional optimization prob-
lem could easily fail if local minima-based optimization strategies are used. Therefore, a genetic
algorithm (GA) based optimization technique is used to obtain the parameters. A GA, with its meta-
heuristic approach, mimics natural selection, providing a more complete and efficient exploration of
the multi-dimensional parameter space.25,30,31 The basic approach of a GA is to evolve a potential set
of randomly generated candidate solutions (termed “individuals”) towards better solutions via mul-
tiple evolutionary stages (termed “generations”) by minimizing an objective function. The objective
function, Z is a measure of the error between the training set values for each configuration and the
values for a candidate set of fitting parameters, and is given as:

Z =wf zf + weze + wszs + wifc2zifc2 + wifc3zifc3, (8)

where, z represents generalized errors, and w represents the weights. The subscripts f, e, s, ifc2 and
ifc3 represent force, energy, stress, harmonic force constant, and cubic force constants. The errors
are given by Rohskopf et al.20 as:

zf =

M∑
j

N∑
i





⇀

FDFT
ij −

⇀

FEIP
ij





2

3MN
M∑
j

N∑
i





⇀

FDFT
ij





2

(9)

where
⇀

FDFT
ij is the ab initio Hellman-Feynman force on atom i in configuration j and

⇀

FEIP
ij is the

force predicted by the potential. The error is summed over all N atoms and M configurations,
and is normalized by the number of forces and sum of ab initio forces. The error for energy ze is
given by

ze =

M∑
j

(EDFT
j − EEIP

j )
2

M
M∑
j

(EDFT
j )

2

(10)

where EDFT
j is the ab initio energy and EEIP

j is the energy predicted by the fitted potential. Energy
is referenced to the energy of the fully relaxed equilibrium configuration. Emphasis is placed on
reproduction of the shape of the energy vs. volume curve, and therefore, the energy is described
as an energy difference Ej = εj � εcoh, where εj is the total potential energy and εcoh is the total
potential energy of the DFT equilibrium configuration with the equilibrium cell dimensions. With
this definition for energy, the energy of the relaxed/minimized structure will always be zero. The
error for supercell stress zs is then given by,

zs =

M∑
j

6∑
k




σ
DFT
jk − σEIP

jk





2

6M
M∑
j

6∑
k




σ
DFT
jk





2

(11)

where σDFT
jk and σEIP

jk are the kth symmetric ab initio and EIP stress tensor components of the jth

configuration, respectively. The sum over k stress tensor components considers the six symmetric
components σxx, σyy, σzz, σxy, σxz, and σyz. Both of these quantities are important for stability and
proper dynamics, which depend strictly on the shape of the energy-volume curve. Fitting of IFCs is
accomplished by addition of another error component, zo

ifc, where o is the order of the IFC being fit.
The IFC error component is given by:
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ze =

P∑
n

(φDFT
n − φEIP

n )
2

P
P∑
n

(φDFT
n )

2

(12)

where P is the number of IFCs and φDFT
n and φEIP

n are the ith order ab initio and EIP IFCs, respec-
tively. The training set consists of the properties being optimized, which may be obtained from
experimental or ab initio results. In the present work, only ab initio DFT results are used to generate
the training set, as described in Section III C. After each generation, the individuals with the least
error (the lowest objective function value), termed the elite population, are stochastically selected
and evolved to the next generation after experiencing some ‘mutation’ and ‘crossover’.25 In a GA,
a set of EIP parameters is termed and individual and individuals are represented as binary strings.
When represented as a single binary string, one or more bits can be flipped at random to produce a
random “mutation”. ‘Crossover’ refers to the mixing of multiple individuals to obtain a new ‘child’
solution.

Here we start with 1200 individuals (that is, 1200 randomly generated parameter sets with 12
parameters each). A group of 1200 individuals is termed a trial, and a trial is allowed to evolve for
250 generations with an elite population of 10%. The elite population is the group of individuals that
exhibited the lowest value for the objective function in that generation. The rest of the population
is randomly selected and grouped with the elites so that 50% of the total population is mixed with
these better performing parameter sets, and they experience crossover and mutation. For a particular
generation, this 50% of solutions are termed the "parents". The parents first undergo a crossover
operation, where a single random crossover point in the string is chosen for two parent solutions.
The binary strings that represent the decimal parameter values of a parent solution are split at the
crossover point, and all the strings beyond this point are swapped with corresponding strings from the
other parent. This recombination results in a "child" solution that then has a randomly chosen mixture
of the two parent binary representations. The next step is to apply the mutation operation, where the
binary strings representing decimal values of each “child” solution experience random perturbations
from "0" to "1" or vice versa. The mutation operation randomly perturbs existing parameters and it
allows the optimization process to explore the full parameter space, reducing the chance of getting
stuck in a local minimum. This means that only the top 10% of each generation survive and the
remaining 90% of the individuals in the next generation are generated through the aforementioned
process.

The objective function value, termed the “fitness”, of each parameter set is then evaluated from
the error obtained with respect to each fitted quantity in the DFT training set. The properties, such
as individual atom forces and super cell stresses, are calculated using the LAMMPS32 open source
code as a shared library with the POP code.20 The respective weights for the objective function
components are given in Table I. The best individuals or the elites in each generation, are then used
to seed the next generation. In the end a single best solution is not necessarily obtained, but rather
many unique solutions with nearly degenerate objective function values are obtained. Here, the best
200 parameter sets were selected for statistical analysis and the resulting parameters cover the ranges
given in Table II, which is also reported in the supplementary material.

TABLE I. Fitting properties and weights.

Properties Weight

Total Force 0.1
Energy vs. Volume 0.3
Stress 0.3
Harmonic force constant (2FC) 0.2
Cubic force constant (3FC) 0.1
Total 1.0

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-7-082712
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TABLE II. Input and output parameter ranges, fraction of search space obtained as output, and the specific values obtained
for the Vashishta-56 parameter set.

Parameter Range Output Range Fraction,% Vashishta-56

H, eVÅη [10-2-0.5x103] [62.68-188.60] 25.18 153.62840
η [10-5-101] [4.99-6.21] 12.20 6.02
χ, Å [10-2-101] [0.09-10] 99.10 5.06
D, eVÅ4 [10-5-101] [0.02-5] 99.60 4.08
ξ , Å [10-5-0.5x102] [0.45-49.92] 98.94 1.83
W, eVÅ6 [10-5-0.5x101] [0.19-4.99] 96.00 0.6932
rc, Å [10-5-101] [5.42-10] 45.80 9.64
B, eV [10-20] [10.1-20] 99.00 15.59
γ, Å [10-5-103] [0.13-4.81] 46.80 2.16
r0 , Å [10-5-0.5x101] [0.08-3.56] 69.60 0.34
C [10-5-3x101] [0.01-29.66] 98.83 28.59
cos θ jik [-1,1] [-1-1] 100 0.0

C. Training data set

Appropriate training datasets that sufficiently sample the relevant phase space were generated
from DFT calculations. The DFT calculations were performed employing the local density approx-
imation (LDA) for the exchange-correlation functional, and the normconserving Perdew-Zunger33

scalar relativistic pseudopotential was used to describe the core electrons. The projector-augmented
wave formalism was implemented in QUANTUM ESPRESSO (QE)34 with a plane wave energy
cutoff of 750 eV. The Brillouin zone was sampled using 4x4x4 uniform (Monkhorst-Pack) k-point
grids. For the self-consistent field (SCF) calculations, the electron energy convergence threshold was
set 1x10-7 eV, and for the initial structural optimization, the force/atom convergence threshold was
set to 1 x10-4 eV/Å.

To further validate the accuracy of the DFT calculations before proceeding to phonon optimiza-
tion, we used the open-source ALAMODE code,35 which is useful for calculating the harmonic and
anharmonic force constants from DFT data, and also facilitates the calculation of dispersion relations
and the phonon DOS. The phonon DOS was calculated using a 4x4x4 mesh resolution, and dispersion
relations were extracted using a fine 150 one-dimensional grid points along each phonon branch. The
phonon BTE is solved under a relaxation time approximation (RTA) using a 30x30x30 grid, which
produces converged phonon thermal conductivity values that can be compared with our results and
with experimental data.

A total of 100 configurations (26 for force constant fitting + 74 for other properties) were used in
the training set. Note that the number of configurations is significantly lower than those required for
neural network potentials (NNP), Gaussian approximated potentials (GAP), or the spectral neighbor
analysis potential (SNAP). In addition, comparing the speeds of these potentials when implemented
in LAMMPS, GAP and SNAP are 10 times slower whereas NNP is ∼ 4 times slower than the much
simpler Vashishta potential. These are significant computational savings by comparison to more
complex potentials, which is one of the key advantages of the POP approach, where the goal is
explicitly to study phonons rather than attempting to describe the entire phase/configuration space.

III. RESULTS AND DISCUSSION

A. Parameter optimization

Table II shows the ranges allowed for the fitting parameters in the Vashishta functional form,
where 12 parameters were optimized. The atomic charges in the Coulomb term of the potential were
assigned a value of zero, since Al is monatomic. The ranges explored for each parameter are given in
the second column and the range of values for each parameter that appear in the best 200 solutions
are given in the third column. Initial inputs were chosen over a much broader range, which was
manually narrowed down to reduce the search space once several solutions emerged. Column 4 gives
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the fraction of input parameter range comprised by the solutions. Since there are many solutions,
it would be cumbersome to represent all of them in tables as is common practice.20,22 Instead, we
have provided LAMMPS input files that refer to specific solutions by a reference index (Vashishta-1,
2, etc.) in the supplementary material. Among these sets of solutions, some may be transferable
to describe other properties, such as surfaces, defects, or alloys, although transferability is neither
guaranteed, nor an objective of the approach.

The statistics give a sense of how much diversity there is in the solutions. For example, if a
parameter has a narrow range, then in all the solutions this parameter was essentially fixed at a nearly
unique optimal value. On the other hand, if a parameter varies drastically, the solutions span a wide
range and are not degenerate in representation, despite the fact that they all reproduce the forces well
and have nearly degenerate objective function values.

Figure 1 shows the error in forces on atoms. The minimum error is ∼32%, and the maximum
is ∼45%, excluding a few outliers. While Rohskopf et al.20 suggest that force error of ∼10% is to
be aimed for, it is important to investigate whether the solutions ensure a fair prediction of phonon
properties. Therefore, in the following sections, the accuracy of the fitted potential with the lowest
force error (i.e., Vashishta-56) is compared against the results of EAM, COMB3, and DFT results.

B. Thermal conductivity accumulation plots

In order to test the accuracy of the fitted potential, it is important to evaluate its efficacy in calcu-
lating phonon thermal conductivity. Based on the Wiedemann-Franz law, the thermal conductivity of
Al is dominated by electrons (>90%), and it is also quite high (> 200 W/m-K). Since it is dominated
by electrons, this puts a large degree of uncertainty on the phonon contribution, if it is to be inferred
from experiments. Phonon thermal conductivity can therefore be expected to be less than 20 W/m-K.
Here, we calculate the phonon thermal conductivity by solving the phonon Boltzmann transport
equation (BTE) under relaxation time approximation (RTA). Solution of BTE was performed using
ALAMODE.35 An atomic displacement of 0.01 Å was used for perturbing the atoms from equilibrium
positions. Prior researchers16,36 have also made similar attempts to calculate thermal conductivity
of Al, but do not report the magnitude of atomic displacements used. Jain and McGaughey16 report
a thermal conductivity of ∼8 W/m-K at 300 K, whereas Wang et al.36 predict the phonon thermal
conductivity to be ∼4.8 W/m-K. Our results, however, indicate a thermal conductivity of ∼ 1 W/m-K
at 300 K. Although there is disparity in these three computed values, additional calculations showed
that this is likely due to the difference in atomic displacements used in the DFT calculations. Fur-
thermore, because of the large degree of uncertainty associated with the phonon contributions, all the
values are arguably consistent with the Wiedemann-Franz Law, since they are all < 20 W/m-K.

The cumulative thermal conductivity (thermal conductivity vs. phonon mean free path) or the
accumulation plot is obtained, as shown in Fig. 2. The figure compares results from DFT, Vashishta-56,
EAM and COMB3 at 300 K. As shown in the figure, the POP Vashishta-56 gives excellent agreement

FIG. 1. Error (%) in forces on atoms for the various sets (trials) of Vashishta potential parameters.

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-7-082712
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FIG. 2. Thermal conductivity accumulation plot estimated using Vashishta-56 (this work) compared with the DFT (RTA) and
predictions of, EAM, and COMB3.

with DFT results. While COMB3 over-predicts the results by about 140% and predictions from the
EAM potential are about 40% lower than the DFT results. These potentials are unable to reproduce
the thermal conductivity accumulation with respect to the phonon mean free paths, which indicates
that they may not be suited for describing phonons. However, the Vashista-56 potential exhibits good
agreement in both the total value of thermal conductivity and the accumulation function.

C. Phonon density of states

In addition to the accumulation plots, phonon densities of states (DOS) were also calculated
using the different potentials and comparing with the DFT results, as shown in Fig. 3. As can be seen
from the figure, phonon DOS predicted by our potential has a better agreement with the DFT results
in terms of the proximities of the peaks. The EAM and COMB3 potentials exhibit good qualitative
agreement, but the actual peaks in frequencies are off by more than 50% in both height and location.

D. Phonon dispersion relations

Phonon dispersion relations represent the phonon branches. It has been shown22 that COMB3
and EAM predict dispersion relations well. Figure 4 shows that the Vashishta-56 potential is also quite
satisfactory when compared with DFT and experimental37 results. In theory, an improved functional
form such as a Taylor expansion may offer sufficient flexibility to capture all the necessary force
constants, particularly for the non-first nearest neighbors. It should also be noted that DFT results can

FIG. 3. Phonon density of states (DOS) calculated by Vashishta-56 (this work), EAM, and COMB3 compared with DFT
results.
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FIG. 4. Phonon dispersion relations calculated using Vashishta-56 (this work), EAM, and COMB3 compared with DFT and
experimental results.37

vary marginally with the pseudopotential used to describe core electrons, but generally the quantitative
and qualitative trends have been captured with high levels of accuracy.

E. Green-Kubo thermal conductivity calculations

Having shown that the Vashishta-56 potential captures the basic phonon properties from the
various ALAMODE calculations, it is important to test its applicability in MD simulations. Using
Vashishta-56, molecular dynamics simulations were performed using LAMMPS,32 to test predictions
of thermal conductivity (k), using the Green-Kubo relation given by:

k =
1

kBT2

∞∫
0

〈
~S(t).~S(0)

〉
3

dt, (13)

where kB is the Boltzmann constant and T is temperature. The heat current vector S was derived by
Hardy.38

~S =
1
V




∑
i

~pi

mi

*
,

p2
i

2mi
+ Ui

+
-

+
∑

i

∑
i

(
∂Uij

∂ri
.~vi

)
~rij




, (14)

where V is the volume, p is momentum, m is the atomic mass, U is the potential energy, v is the velocity,
and r is the position of atoms represented by i and j. To test for stability, we tried different ensembles
and thermostats to make sure the crystal preserved its lattice stability throughout the calculation
without any significant deviations in energy or structure. For the thermal conductivity calculation,
as a first step, the energy of a FCC crystal with 256 atoms was minimized by the conjugate-gradient
(CG) method with a relative tolerance of 1x10-4 and 1x10-6 for energy and forces respectively, and
the system was then equilibrated in the NPT ensemble for 10 ps. A time-step size of 0.1 fs was used
and the Green-Kubo calculations were performed for another 100 ps with a correlation length of 1 ps.
The crystal size of 256 atoms and correlation time of ∼ 1 ps were determined to be sufficient after
testing for convergence.

The temperature dependency of lattice thermal conductivity of the FCC Al crystal was compared
with the results from the solution of the phonon Boltzmann transport equation. Results of the calcula-
tions are presented in Fig. 5. For each temperature, ∼35 independent results were averaged; the error
bars correspond to the standard deviation amongst the independent results. As the figure shows, there
is again a good agreement with the BTE results in the temperature range considered. The maximum
deviation, ∼10%, is observed at 400 K. For all the other temperatures, the deviation is well within
our goal of 10%. This suggests that POP Vashishta-56 can be used to simulate the phonons in Al,
with fidelity.
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FIG. 5. Temperature dependency of thermal conductivity calculated using Green-Kubo relations compared with DFT (RTA)
results.

IV. CONCLUSIONS

In this work, phonon-optimized potential (POP) for aluminum has been developed, and this is the
first application of this method to a metal. The POP methodology was previously validated for silicon
and germanium, and now has been extended to aluminum via the Vashishta functional form, resulting
in approximately 200 solutions of interest. The functional form and the parameter sets can be readily
used in MD simulations using LAMMPS software. The phonon properties predicted by Vashishta-56
align well with the results from DFT calculations, and the force error is ∼32%, which is somewhat
lower than previous EAM and COMB3 potentials. Nonetheless, despite the seemingly large force
error, the Vashishta-56 potential is able to accurately reproduce the phonon-phonon interactions, as
indicated by the excellent agreement between the thermal conductivity accumulation plots in Fig. 2.
When using MD, the thermal conductivity calculated by the Green-Kubo method is within 10% of
the BTE-RTA results. In the future, this same approach can be extended to aluminum oxide (Al2O3)
and to the interface between Al and Al2O3, which is of interest to the combustion community.

SUPPLEMENTARY MATERIAL

See supplementary material for the open-source POP code and manual are located at
www.pops.gatech.edu. The parameters for potentials used in this study are attached as separate files
as supplementary material.
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